Bolygók

 

A bolygó olyan jelentősebb tömegű égitest, amely egy csillag vagy egy csillagmaradvány körül kering, elegendően nagy tömegű ahhoz, hogy kialakuljon a hidrosztatikai egyensúlyt tükröző közel gömb alak, viszont nem lehet elég nagy tömegű ahhoz, hogy belsejében meginduljon a magfúzió, valamint tisztára söpörte a pályáját övező térséget. Van olyan elmélet is, hogy a csillagközi térben is lehetnek bolygószerű égitestek, amelyek valamely csillagrendszerből lökődtek ki, vagy csillagközi por összesűrűsödésével jöttek létre.

A Jupiter az ötödik bolygó a Naptól, és messze a legnagyobb bolygó a Naprendszerben. Óriásbolygó, tömege két és félszerese az összes többi bolygó együttes tömegének. A többi óriásbolygóval (Szaturnusz, Uránusz, Neptunusz) együtt gyakran Jupiter-típusú, vagy külső bolygóknak nevezik.A Földről nézve maximális fényessége -2,94 magnitúdó, ezzel átlagosan a harmadik legfényesebb égitest az éjszakai égbolton, a Hold és a Vénusz után (rövid időre a Marsvetekedhet fényességével pályájának bizonyos pontjain). A Jupiter főként hidrogénből áll, tömegének egynegyedét hélium teszi ki, sziklás magja nehezebb elemeket tartalmazhat. Gyors forgása miatt alakja forgási ellipszoid (lapított gömb). A külső atmoszférája láthatóan számos sávra oszlik a különböző szélességi körökön, turbulenciát és viharokat okozva ezek határain. Kiemelkedő látványosság aNagy Vörös Folt, egy óriási vihar, amit már a 17. században is megfigyeltek. A bolygót halvány planetáris gyűrűrendszer és erős magnetoszféra vesz körül. 67 holdja van (2014-es adat), köztük a négy legnagyobbat Galilei-holdaknak nevezzük, amelyeket 1610-ben fedezett fel névadójuk. A Jupitert számos űrszonda vizsgálta már, legismertebbek ezek közül a Pioneer és Voyager közelrepülések és később a Galileo űrszonda. A bolygót már az ókori csillagászok is ismerték, számos kultúrában mitologikus és vallási tartalommal ruházták fel. Nevét Iuppiterről, a római főistenről kapta. A bolygó csillagászatban és asztrológiában használt jele az istenség kezében hagyományosan megjelenő villámot jelképezi. A Jupiter a Naprendszer négy gázóriásának egyike; elsősorban nem szilárd anyagból áll. 142 984 kilométeres egyenlítői átmérőjével a legnagyobb bolygó a Naprendszerben. A Jupiter sűrűsége 1,326 g/cm³, a második legnagyobb a gázbolygók közül, de a négy kőzetbolygóénál kisebb. A gázóriások közül a Neptunusznak van a legnagyobb sűrűsége. A Jupiter felső légköre atomszám szerint 93% hidrogénből és 7% héliumból áll, molekulaszám szerint 86% hidrogénből és 13% héliumból. Mivel a héliumatom négyszer nagyobb tömegű, mint a hidrogénatom, az összetétel változik, ha a tömegarányt nézzük. Ez alapján a légkör 75%-a hidrogén, 24%-a hélium, 1%-a más elem. A bolygó belseje sűrűbb anyagot tartalmaz, nagyjából 71% hidrogént, 24% héliumot és 5%-a más elemeket. A légkör nyomokban tartalmaz metánt, vizet, ammóniát és szilícium alapú összetevőket. Található még szén, etán, hidrogén-szulfid, neon, oxigén és kén. A légkör külső rétege tartalmaz fagyott ammóniakristályt is. Infravörös és ultraibolya mérésekkel benzolt és más szénhidrogént is kimutattak. Színképelemzés alapján a Szaturnuszról úgy tudjuk, hogy összetétele hasonló a Jupiteréhez. A másik két gázóriásnak, az Uránusznak és a Neptunusznak viszonylag kevesebb hidrogénje és héliuma van. Helyszíni mérések hiánya miatt a nehezebb elemek pontos gyakorisága a Jupiteren túli bolygóknál nem ismert. A Jupiter 2,5-szer nagyobb tömegű, mint a Naprendszer többi bolygója együttvéve. Bár a Föld eltörpül a Jupiter mellett (átmérője 11-szer kisebb), az óriásbolygó sűrűsége jóval kisebb. A Jupiternél sokkal nagyobb tömegű exobolygókat is felfedeztek, bár ezeknek a többségéről úgy vélik, hogy szintén gázóriások. Nincs egyértelmű definíció arra, hogy mi különbözteti meg egy gázbolygót (mint például a Jupitert) egy barna törpétől, bár az utóbbinak meglehetősen speciálisak a színképvonalai. Jelenleg, ha egy csillagszerű anyageloszlással rendelkező égitest meghaladja a 13 Jupiter-tömeget (tehát elég nagy ahhoz, hogy deutériumot égessen), akkor barna törpének tekintik. Ennél kisebb tömegű égitest bolygónak minősül. Ha a Jupiter nagyobb tömegű lenne a jelenleginél, valószínűleg összeroskadna. A belső egyre jobban összehúzódna a fokozott gravitációs erő alatt. Az összehúzódás addig folytatódna, amíg a magfúzió be nem indulna.[8] Néhány csillagász sikerületlen csillagnak nevezi a Jupitert. Bár a bolygónak hetvenötször kellett volna nagyobb tömegűnek lennie, hogy csillag lehessen, a legkisebb vörös törpe csak körülbelül 30%-kal nagyobb sugarú, mint a Jupiter.  Ennek ellenére a Jupiter még mindig több hőt sugároz, mint amennyit a Naptól kap. A bolygó által termelt hő majdnem egyenlő a kapott napsugárzással. Ezt a hősugárzást Kelvin–Helmholtz-folyamat hozza létre adiabatikus összehúzódással. A folyamat eredményeként a bolygó körülbelül 2 cm-t húzódik össze minden évben. Kialakulásakor a Jupiter kétszer nagyobb átmérőjű és sokkal melegebb volt, mint most. A Jupitert ammóniakristályokból és ammónium-hidroszulfidból álló felhők borítják. A felhők a tropopauzában helyezkednek el, és sávokban vannak elrendeződve különböző szélességeken. Ezek világosabb színű zónákra és sötétebb övekre oszlanak. A különböző irányú áramlatok kölcsönhatásai viharokat és turbulenciákat okoznak. 100 m/s (360 km/óra) sebességű szelek szokásosak a különböző sávokban. Ezek a zónák évről évre változtatják szélességüket, színüket és intenzitásukat, de eléggé stabilak, hogy a csillagászok azonosító jelzésekkel lássák el őket. A felhőréteg csak 50 kilométeres vastagságú, két felhőréteg található: egy vastag alsó réteg és egy vékonyabb régió. Vízfelhők vékony rétege húzódhat az ammóniaréteg alatt, amelyet a Jupiter légkörében megfigyelt villámlások bizonyítanak. Ezek az elektromos kisülések több ezerszer erősebbek lehetnek, mint a földiek. A vízfelhők belső hő által táplált viharokat is létrehozhatnak. A Jupiter sztratoszférájában lévő víz eredete nagyrészt a Shoemaker–Levy 9 üstökös 1994-es becsapódásának következménye a Herschel űrtávcső mérései szerint. A víz eredete korábban éveken keresztül vita tárgya volt. A Jupiter legismertebb alakzata a Nagy Vörös Folt, a Földnél nagyobb átmérőjű, tartós anticiklon vihar az egyenlítőtől 22°-kal délre, amely legalább 300 éve tombol. Matematikai modellek azt mutatják, hogy a vihar stabil képződmény, a bolygó állandó alakzata. Új megfigyelések azt bizonyítják, hogy a Nagy Vörös Folt zsugorodik, az átmérője évente mintegy 900-1000 km-rel csökken. A Szaturnuszhoz hasonlóan a Jupiter is rendelkezik gyűrűkkel, de ezek halványak, és főleg a holdakról származó porrészecskékből állnak. A Szaturnusz gyűrűivel ellentétben ezek kevesebb jeget tartalmaznak. A gyűrűrendszer három fő részre osztható: az apró részecskék alkotta legbelső gyűrű (halo), a viszonylag fényes középső gyűrű és a kettős külső gyűrű (Gossamer Ring). A Jupiter magnetoszférája a legnagyobb alakzat az egész Naprendszerben. Elnyúlik egészen a Szaturnusz pályáján túlra. Ha látható lenne, az esti égbolton nagyobbnak látszana, mint a telihold. Kb. 14-szer erősebb a földi magnetoszféránál. Aforgástengely és a mágneses tengely 11°-os szöget zár be egymással úgy, hogy az északi mágneses pólus a déli földrajzi pólus közelében van, a déli pedig az északi pólus közelében (azaz polaritása a földinek fordítottja). A Jupiter magnetoszférájának mérete a napszél hatása miatt változik. A magnetoszféra kialakulásának oka valószínűleg a bolygó belsejében lévő folyékony fémszerű burok. A mágneses pólusoknál a magnetoszféra és a napszél részecskéinek interakciójából jön létre a Jupiter aurórája. A Jupiter naptávolsága (a pálya fél nagytengelye) 778,57 millió km (5,20 CsE), (sziderikus) keringési ideje 4332,589 nap, azaz 11,862 év, ami a Szaturnusz keringési idejének kétötöde.Az egyetlen bolygó, amelynek a Nappal való tömegközéppontja a csillagon kívül helyezkedik el, bár ez mindössze a Nap sugarának a 7%-ával van a felszín felett. Napközelségben (perihélium) 740,52 millió km, míg naptávolban (aphélium) 816,62 millió km a Naptól való távolsága. A bolygópálya excentricitása 0,0489, inklinációja 1,304°. Alakja a gömbtől erősen eltér, a gyors tengelyforgás miatt. Sarki átmérője 134 000 km, egyenlítői átmérője 143 000 km, azaz a Nap átmérőjének kb. 10%-a. Az egyenlítői sáv - ez az egyenlítőtől északra és délre 10 foknyi távolság - forgási periódusa 9 óra 50 perc 30 másodperc, a nagyobb szélességeké 9 óra 55 perc 40 másodperc. Az egyenlítői sáv gyorsabb forgási periódusa valószínűleg egy erős légköri áramlásnak köszönhető, amely a bolygó forgási irányával megegyező irányú (azaz nyugatról keletre mozog).Tengelyferdesége mindössze 3,13°, így a bolygón nincsenek jelentős évszakoknak megfelelő változások, ellentétben a Földdel, vagy a Marssal. Az egyetlen bolygó, amelynek a Nappal való tömegközéppontja a csillagon kívül helyezkedik el, bár ez mindössze a Nap sugarának a 7%-ával van a felszín felett. Napközelségben (perihélium) 740,52 millió km, míg naptávolban (aphélium) 816,62 millió km a Naptól való távolsága. A bolygópálya excentricitása 0,0489, inklinációja 1,304°. A Jupiter általában a harmadik legfényesebb égitest az éjszakai égbolton (a Hold és a Vénusz után), bár a Mars időnként fényesebb lehet nála. Megfigyelhető szinte egész évben, júniustól este a keleti égen látható, akár 10-szeres nagyításnál is már látszik a korong alak. A Földhöz képesti pozíciójától függően fényessége -2,94 és -1,6 magnitúdó közötti. Szögátmérője 30″ és 50″ között változik. A Föld 398,9 naponként előzi meg a Jupitert a Nap körüli keringésben (szinodikus periódus). Emiatt időnként a Jupiter a háttércsillagokhoz képesti, nyugat felé tartó mozgása megáll, megfordul és ismét elindul kelet felé, azaz a többi külső bolygóhoz hasonlóan keringése során hurkokat rajzol az égboltra. A holdak közül a Galilei-holdak láthatóak szabad szemmel (csak a Jupiter kitakarásával), azok közül a Ganymedes a legkönnyebb célpont, maximális látszó távolsága 9' a Jupitertől, azaz a telihold átmérőjének harmada, fényessége 5,4 magnitúdó lehet. Új sötét folt jelent meg a Jupiter déli pólusa környékén, amely feltehetően egy kisbolygó vagy üstökösmag becsapódási nyoma lehet. Anthony Wesley ausztrál amatőr csillagász 2009. július 19-én éjjel lefotózta a csapódás helyét, Magyarországról is készültek fényképek a jelenségről. 1979. március 5-én a Voyager-1 280 ezer km-re közelítette meg a Jupitert, melynek gravitációja segítségével 14 km/s-ra gyorsult, így folytathatta útját a Szaturnusz felé. Két nap alatt több Jupiter-holdat is megközelített, köztük az Amaltheát, az Iót, az Európát és a Ganymedest. Január 24-től kezdve készített felvételeket az óriásbolygóról. A szűk látószögű kamerával 40 millió km-ről készült képek sokkal élesebbek voltak a Pioneer-10 és Pioneer-11 által készített képeknél. Közben a szonda adatokat gyűjtött a légkör összetételéről: 82% hidrogén, 17% hélium, 0,05% metán, 0,01% ammónia, vízgőz, kén, nitrogén stb.  A Jupiternek 67 holdja ismert. A négy legnagyobbat (Io, Európé, Kallisztó, Ganümédész) Galilei-holdaknak nevezik, felfedezőjük Galileo Galilei után, aki 1610-ben észlelte őket. A következő négy évszázadban további kilenc kisebb holdat fedeztek fel a csillagászok földi távcsöveikkel. 1979-ben a Voyager–1 űrszonda három újabbat talált, ezzel az ismert holdak száma 16-ra emelkedett. Később a fejlettebb technológiáknak köszönhetően további holdakat fedeztek fel a csillagászok; ezek kicsi, átlagosan 3 km átmérőjű aszteroidák, amelyeket befogott a Jupiter gravitációs tere. A jelenlegi 67 hold több, mint amennyi bármely más bolygónak van, de valószínűleg még több kisebb, ismeretlen hold kering a Jupiter körül.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

föld, terra, gaia, nap, latin, Szaturnusz, Hold, kék hold, Merkúr, Bolygó, csillag, csillagkép, csillagászat, távcső, Vénusz, Uránusz, Neptunusz, Mars, marslakók, Pluto, Jupiter, Andromeda, törpebolygó, Orion, köd, csillagköd, Centauri, Kentaur, pulzár, sas, oltár, szűz, rák, vízöntő, bika, skorpió, oroszlán, nyilas, mérleg, ikrek, kos, halak, bak, paradicsommadár, légszivattyú, asztronómia, képgaléria, élővideó, astronomy, live streaming, saturn, starwars, jedi, jeti, bucka, Szigetszentmiklós, Budapest, Sziget, Szigethalom, Csillagvizsgáló, Szigetszentmiklósi csillagvizsgáló, planetárium, ufó, fekete ruhások, Tankcsapda, barlow lencse, Hidra, medve, űr, világűr, aszteroida, üstökös, space, űrhajó, kacsa, pletyka, hírek, hír, legfrissebb hírek, legfrissebb hír, bulvár, könyv, áruház, Messier 29, M29, NGC 6913, Messier 28, M28, NGC 6626, Messier 26, M26, NGC 6694, Messier 25, M25, Messier 24, M24, Kis Nyilas-csillagfelhő, Kis Sagittarius-csillagfelhő, Messier 23, M23, NGC 6494, Messier 21, messier 21, M21, Geminidák, meteorraj, Geminidák meteorraj, oktáns csillagkép, Hindu csillagkép, indus, hindu, Messier 19, M19, Messier 14, M14, hiúz csillagkép, hiúz, NGC 6402, M6, Messier 6, NGC 6405, pillangó halmaz, Messier 7, M7, NGC 6475, Skorpió csillagkép, Messier 30, M30, Messier 18, M18, Messier 106, M106, Messier 104, M104, NGC 4594, Sombrero-galaxis, Messier 83, M83, Déli Szélkerék-galaxis, Északi Vízi kígyó csillagkép, Messier 82, M82, M81, Messier 81, Szivar-galaxis, Messier 66, M66, M63, NGC 5055, Napraforgó-galaxis, Vadászebek, Canes Venatici, csillagkép, Messier 63, spirál galaxis, Pierre Méchain, fedezte fel, 1779. június 14-én., Charles Messier, francia csillagász, ugyanezen a napon, katalogizálta, galaxis, Ingaóra Csillagkép, Ingaóra, Horloge à pendule & à secondes, Horologium Oscillitorium, Christiaan Huygens, Horologium, α Horologii, R Hor, TW hor, NGC 1261, NGC 1512, Mira, Pegazus Csillagkép, Pegazus, Messier 15 gömbhalmaz, NGC 1 spirálgalaxis, NGC 2 spirálgalaxis, NGC 8 kettőscsillag, NGC 9 spirálgalaxis, NGC 14 szabálytalan galaxis, NGC 15 spirálgalaxis, NGC 16 lentikuláris galaxis, NGC 22 spirálgalaxis, NGC 23 spirálgalaxis, NGC 26 spirálgalaxis, NGC 32 aszterizmus, NGC 41 spirális galaxis, NGC 42 lentikuláris galaxis, NGC 52 spirális galaxis, NGC 7331 spirálgalaxis, NGC 7479 spirálgalaxis, NGC 7814 spirálgalaxis, Bellerophontész, Poszeidón, Hésziodosz, Hippokrene, α Pegasi, β Pegasi, Olümposz, Zeusz, Helikon, messier 57, M57, Gyűrűs-köd, M51, Messier 51, Messier 45, M45, Messier 43, M43, Messier 42, M42, Orion köd, Messier 32, M32, Messier 31, M31, Androméda galaxis, Androméda köd, Messier 27, M27, kis róka csillagkép, Charles Meisser, Messier 22, M22, Nyilas, Sagittarius, Messier 20, M20, Messier 17, M17, Omega-köd, Patkó-köd, Hattyú-köd, Sas köd, Messier 16, M16, M15, Messier 15, Pegazus, M13, messier 13, Hercules csillagkép, Hercules, messier 12, M12, Messier 11, M11, Vadkacsahalmaz, Pajzs csillagkép, messier 10, M10, Messier 9, Kígyótartó csillagkép, Kígyótartó, Messier 8, M8, Lagúna-köd, Messier 5, M5, Messier 4, M4, messier 2, Messier 1, M1, Rák-köd, Leonida, Leonidák meteorraj, TRAPPIST-1, naprenszeren kívűli bolygó, naperndszeren kívűli csillag, Messier 101, M101, Aranyhal, Dél keresztje, Crux, Szíriusz, sirius, alfa centauri, Kemence, Fornax, fornacis, Orionida, meteor, meteorraj, üstökös, orionids, halley, orion kardja, hullócsillag, távcső, föld, messier katalógus, csillagokonline, magyarul, közvilágítás, objektum, cet, cet csillagkép, kétó, Pontosz, hajógerinc, hajógerinc csillagkép, carina, OSIRIS Rex, Kentaur, Centaurus, Cepheus, észak, Cassiopeia, Kis Kutya, Canis Minor, Nagy Kutya, Canis Major, Vadászebek, kutyák, Camelopardalis, Véső, Ökörhajcsár, Szekeres, Küldd a neved a Marsra, Orion köd, Orion, Buborékok, Tarantula, Nebula, föld, terra, gaia, nap, latin, Szaturnusz, NASA

 A Föld (görögül:Gaia, latinul: Terra) a Naptól számított harmadik bolygó a Naprendszerben. A legnagyobb átmérőjű, tömegű és sűrűségű az ismert Föld-típusú bolygók közül. Több millió faj, köztük az ember élőhelye is. A Föld a világegyetem egyetlen olyan bolygója, amelyről tudjuk, hogy életet hordoz. Jelenlegi ismereteink szerint 4,44–4,54 milliárd éve alakult ki, és a felszínén mintegy egy milliárd év múlva az élet is megjelent. Azóta a bioszféra jelentősen megváltoztatta az atmoszférát, és más, biotikus összetevőit. Ezzel lehetőség nyílt az aerob organizmusok osztódásos szaporodására, és létrejött az ózonréteg ami (a földi mágneses mezővel közösen) megszűri az ártalmas ultraibolya sugárzást. A Naprendszer külső körülményei a várakozások szerint még mintegy 1,5 milliárd évig támogatják az élet jelenlétét, de ezután a mind fényesebbé váló Nap el fogja tüntetni a bioszférát. A földkéreg több különálló részre, tektonikai lemezekre töredezett, és ezek az elmúlt évmilliók során, és jelenleg is folyamatosan mozognak egymáshoz képest. A felszín nagyjából 71 százalékát sós vizű óceánok, a fennmaradó területet kontinensek és szigetek foglalják el. Nem tudunk más olyan bolygóról, aminek felszínén folyékony víz található, márpedig az a földi élet elengedhetetlen feltétele. A Marson valaha volt víz, de ma már csak legfeljebb nyomokban, jéggé fagyva fordulhat elő. A Föld belseje aktív maradt. A Föld több objektummal is kapcsolatban áll a világűrben. Ezek közé tartozik a Nap és a Hold. Jelenleg, amíg a Föld megkerüli a Napot, addig nagyjából 366,26-szor megfordul saját tengelye körül. Ez az időszak egy sziderikus év, ami nagyjából 365,26 sziderikus napig tart. A Föld tengelyének ferdesége a keringési síkra bocsátott merőlegeshez képest 23,4°.Ennek következményei az évszakok. A Föld egyetlen természetes holdja, a feltételezett 4,53 milliárd éve létrejött Hold vonzása alakította ki az árapályt, ami egyensúlyban tartja a tengelyferdeséget és valamelyest lassítja a bolygó forgását. Az óceánok kialakulásában egyes elméletek szerint a bolygó történetének korai szakaszában nagy szerepet játszott egy üstököseső. Később a felszínt kisrészt kisbolygók becsapódásai alakították még, azonban ezek szerepe elhanyagolható a tektonika és a lepusztulás mellett. Kezdetben, kb. 4,6 milliárd éve a Föld izzó, olvadt állapotban volt, a gravitáció hatására ekkor alakult ki a gömbhöz hasonló formája. Ebben az állapotban különböző rétegek alakultak ki, amelyek – a planetáris differenciálódás során – sűrűségüknek megfelelően gömbhéjakba (geoszférákba) rendeződtek. E folyamat során alakult ki a földbelső jelenlegi tudásunk szerinti szerkezete: legkívül van a földkéreg, ezen belül található a földköpeny, és legbelül a külső és belső magból álló földmag. Később, amikor a kéreg megszilárdult és megindultak a vulkanikus folyamatok, a kéreg lemezekre töredezett (vagy sosem állt össze egységes szilárd kéreggé), majd kialakult egy újabb, gázokból álló gömbhéj, a légkör is, valamint a felszínen egy – bolygóméreteket tekintve vékony – részleges vízborítás is kialakult. Tudományos feltételezések szerint a Földön található víz a korai időszakban becsapódó aszteroidákból származik. A Föld alakját alapvetően két fizikai hatás határozza meg: az általános tömegvonzás, amellyel minden egyes tömegrészecske hat az összes többire, továbbá a Föld tengely körüli forgása. A Földhöz rögzített forgó koordináta-rendszerben a tömegvonzás és a forgó koordináta-rendszerből adódó centrifugális erő kölcsönhatására létrejövő, elméletileg forgási ellipszoid alakú folyadékszerű testhez a tényleges Föld-alak nagyon közel áll: e hidrosztatikus egyensúlyi alaktól csak helyenként tér el. A magashegységek és a mélytengeri árkok területén a fizikai földfelszín nem követi az elméleti felületet, mert itt más hatások is közrejátszanak a felszín alakításában. Az elméleti földalak, a geoid, azaz nehézségi gyorsulásnak a közepes tengerszinttel egybeeső potenciálfelülete ezeken a területen a kőzetfelszínt nem követi. Gyakorlati okokból éppen ezért általában egyszerűsített modellt használunk a Föld alakjaként. A geodéziában lapult forgási ellipszoiddal helyettesítjük a geoidot, de néha a még egyszerűbb gömbi közelítés is megfelelhet. Gömbi közelítésnél a közepes földsugárral (R) számolunk. Ez esetben is a modellnek ugyanolyan a forgása és akkora a tömege, mint a valódi Földnek. Ha a a Föld egyenlítői és b a sarkokon mért sugara, akkor f = (a-b)/a adja meg az ellipszoid lapultságát. Ekkor a gömbi és az ellipszoidi térfogatok egyenlőségének felírásával R³ = a²b egyenletre jutunk, amiből R meghatározható. A bonyolultabb modellek paramétereit a földközeli műholdak pályájának mérései alapján számítják. A Föld alakjának (a geoidnak) egyik elfogadott globális közelítése a WGS84 (World Geodetic System) elnevezésű geodéziai dátum, mely nem más, mint egy tömegközépponti elhelyezésű forgási ellipszoid, ahol a fél-nagytengely hossza 6 378 137 méter, fél-kistengely hossza 6 356 752,314 m. Az eltérés alig 0,33% a két tengely között, ezért lehet a gömb is jó közelítés. Amennyiben nem a globálisan jó illeszkedés a cél, hanem valamely kontinenst vagy még kisebb területet térképezünk, akkor más, helyileg jobban illeszkedő dátumot használunk. Magyarországon például az IUGG67 ellipszoidból képzett HD72 dátum jobban írja le a felületet, ezért a magyar polgári térképezés többnyire ezt az alapfelületet használja. A Föld belső része öves felépítésű, az övek elhelyezkedése, kiterjedése, sőt esetenként mozgása is jól ismert ma már. Az övek összetételét illetően azonban még feltételezésekre, elméletekre kell hagyatkozni, mivel a legfelső 30–70 km-t leszámítva ez teljesen ismeretlen. A Föld öveinek kémiai összetételét vizsgáló elméleteknek magyarázatot kell adni az ismert jelenségekre, a Föld átlagsűrűségére, és meg kell felelnie a kozmológiai ismereteinknek is. A Föld szerkezetére vonatkozó legismertebb elmélet az úgynevezett Goldschmidt-féle vasmagos modell. Ez kémiailag inhomogén öveket tételez fel, amelyben egyszerű ülepedés hatására a mélyebb rétegek a nagyobb fajsúlyú anyagokat tartalmazzák. Magyarázatot ad a felszíni kőzetek sűrűsége és a Föld átlagsűrűsége közötti eltérésre, valamint a mágneses mezőre. A Föld öves szerkezetének létrejöttét az Egyed László-féle vasmag nélküli modell kémiailag homogénként írja le, amelyben kizárólag a nyomás és a hőmérséklet változásai hozzák létre a szeizmológiailag mérhető övezethatárokat. A Föld átlagsűrűségét a magban található elfajult anyag növeli meg, a mágnesességet ugyanennek az elfajult anyagnak a mozgása hozza létre. A modell szerint a kéreg alatti konvekciós áramlatok olyan keveredést okoznak, ami meggátolja a fémes (nehéz) elemek leülepedését. Ez az elmélet vetette fel először a táguló Föld elképzelését. A Föld felszíne rendkívül változatos domborzati formákat hordoz. A felszín közel 71%-át víz borítja, a további 29%-ot szárazföldnek nevezzük. A kéreg víz alatti teteje hasonlóan tagolt, mint a szárazföldek felszíne: hegyek, hegyláncok, árkok, síkságok váltogatják egymást mindkettőnél. Bolygónk felszíne a vulkáni tevékenység, a lemeztektonika és az erózió miatt folyamatosan átalakul, igaz ebben a folyamatban több ezer, vagy akár több millió év alatt mutatkoznak meg a változások. A földfelszínt az óceánok és kontinensek dominanciája szerint is két félgömbre lehet osztani, az óceáni félgömbre és a szárazföldi félgömbre. A Föld légköre a bolygó felszínét körülölelő gázburok, amelyet a gravitáció tart a helyén. A gázburok össztömege 5,1480×1018 kg, ebből adódóan a tengerszinten mért légnyomás 101,3 kPa (= 1 atmoszféra (atm) = 760 torricelli (torr) = 736,6 higanymilliméter (Hgmm)), amely a tengerszint feletti magasság növekedésével – a légkör ritkultával – csökken. Emiatt a folyamatos ritkulás miatt a légkör és a világűr között nincs éles határ. Az űr határát, az ún. Kármán-vonal jelenti, egy 100 kilométer magas képzeletbeli vonal, azonban itt még olyan sűrű a légkör, hogy az ott közlekedő űreszközök maximum 1-2 napig képesek stabilan pályán maradni, utána a légellenállás annyira lelassítja őket, hogy visszazuhannak a földfelszínre. A légkör nem mozdulatlan légtömeg, a napfény hője, valamint a Coriolis-erő hatására állandó cirkulációban van. A hétköznapi megfigyelés szintjén ez különböző szelek, szélrendszerek formájában jelenik meg. A légkört alkotó gázokat gyűjtőnéven levegőnek nevezzük. A levegő 78,08% nitrogénből, 20,95% oxigénből, 0,93% argonból, 0,038% szén-dioxidból, továbbá vízpárából és nyomokban hidrogénből, héliumból és más nemesgázokból tevődik össze. A gázokon és a vízpárán kívül más anyagok is találhatóak a légkörben, amelyek egy része természetes, más része mesterséges, az ember tevékenységei által a levegőbe juttatott szennyezőanyag. A természetes légköri anyagok a por, a pollenek, vulkáni por és hamu és a meteoroidok. A mesterséges anyagok a gyárak és a közlekedés által a légkörbe bocsátott por, klór, fluor, higany, kén stb. Az atmoszférát sávokra osztjuk a levegő fizikai tulajdonságai alapján:

-Troposzféra: a földfelszíntől az egyenlítőnél 17, a sarkok felett azonban csak 7 kilométer magasságig húzódó légréteg, amelyet a földfelszín kisugárzott hője melegít fel és amelyben a magassággal csökken hőmérséklet. Ez a réteg teszi ki a teljes légkör tömegének 80%-át, itt folyik a légiközlekedés. A réteg felső határát az ún. tropopauza jelenti.

-Sztratoszféra: a tropopauza és a közelítőleg 50-55 kilométer magasságban húzódó sztratopauza közötti réteg. A tropopauza feletti légtérben a levegő teljesen száraz, sem vízpára, sem jégkristályok nincsenek már és a hőmérséklet a magasság növekedésével enyhén emelkedik. A légköri nyomás a felszíni nyomás ezredrészéig csökken ebben a rétegben.

-Mezoszféra: a sztratopauza és 80-85 kilométer magasság közötti, a mezopauzáig terjedő réteg. A sztratorszféra feletti rétegben a magasság/hőmérséklet összefüggés ismét megfordul, itt a hőmérséklet újra csökken a magasság növekedésével. A réteg tetején mérhető a legalacsonyabb hőmérséklet a bolygón, a mezopauzában átlagosan -100 °C van. A Földdel találkozó kozmikus porszemcsék ebben a rétegben elégve okozzák a hullócsillag jelenséget.A troposzféra és a sztratoszféra és a mezoszféra együtt alkotja a homoszférát.

-Termoszféra: a mezoszféra feletti, a naptevékenység alakulásától függően 350-800 kilométer magassági terjedő légréteg, amelyben újra megfordul a hőmérséklet és a magasság közötti összefüggés: a magassággal a hőmérséklet növekszik egészen a termopauzáig, amelytől felfelé viszont már állandó marad. A hőmérséklet ebben a magasságban elérheti az 1500 °C-ot (bár a gázmolekulák itt már olyan ritkán helyezkednek el egymáshoz képest, hogy a hétköznapi értelemben vett hőmérséklet itt nem értelmezhető. Az űrhajózásban ez a leginkább használt zóna, itt húzódik az ún. alacsony Föld körüli pálya, itt kering aNemzetközi Űrállomás, vagy az űrrepülőgépek, a műholdak nagy része.

-Exoszféra: a termoszféra feletti, főként hidrogénből és héliumból álló, a napszél által alakított legfelső légköri réteg. Az ebben a rétegben levő gáz már nem hasonlít a köznapi értelemben vett levegőre, vagy más gázra, a molekulák több kilométert is sodródhatnak, mire egy másikkal ütköznének. Ezek a részecskék erősen ki vannak téve a napszél hatásának, illetve a mágneses tér erővonalainak terelő hatásainak. Ebben a rétegben már szinte kizárólag csak hidrogén és hélium található. Az exoszféra és a termoszféra együtt alkotja a heteroszférát.

Az öt fő réteg mellett egyéb tulajdonságok alapján más rétegeket is megkülönböztetünk. Ilyen például az ózonréteg, amely a sztratoszféra 15–35 km-es sávjában található, ahol az ózonkoncentráció sokkal magasabb, mint a légkör többi részében. A réteg modern kori ritkulása, az ún. ózonlyuk a felszínre jutó káros sugárzás növekedésével, az élőlényekre ható káros hatásokkal jár. Másik ilyen réteg az ionoszféra, egy 50 és 1000 kilométer között elhelyezkedő, a nap sugárzása által ionizált gázokból álló képződmény, amely a magnetoszféra belső határát is kijelöli egyben.

    A Föld mágneses mezeje egy mágneses dipólus, hasonló, mint egy rúdmágnes által generált mágneses mező. A rendszer két pólusa közelítőleg megegyezik a földrajziészaki és déli pólussal (érdekesség, hogy a mágneses mező déli pólusa az Északi mágneses pólussal és a mező északi pólusa a Déli mágneses pólussal egyezik meg), a két mágneses sarkot összekötő képzeletbeli tengely 11,3°-kal tér el bolygónk forgástengelyétől. A mágneses sarkok nem stabilak, átlagosan 15 kilométert vándorolnak arrébb a földfelszínhez viszonyítva minden évben (a két mágneses pólus egymástól független irányokba vándorol és nem pontosan a földgömb átellenes pontjain helyezkednek el). A mező instabilitásának másik jele a nagyjából 200 000 évente bekövetkező pólusváltás. Hawaii vulkánjainak megfigyeléséből származó, a kőzetekben megőrződött mágnesesség mérésein alapuló feltételezések szerint időről időre megváltozik a mágneses mező polaritása, a legutóbbi ilyen esemény 780 000 évvel ezelőtt következett be. A mágneses mező eredete feltételezhetően a bolygómagban létrejött dinamóhatás, amelyben a mag olvadékának áramlása hatására létrejövő áramlatok elektromos áramot és mágneses mezőt indukálnak. A földmagban indukálódott mágneses mező rendkívül kiterjedt, a felszíntől több tízezer kilométerre elnyúló mágneses buborékot, az ún. magnetoszférát hozza létre bolygónk körül. A magnetoszféra alakja nem gömbszimmetrikus, hanem üstökösre hasonlít, mivel a napszél nyomása eltorzítja (a Föld nappali oldalán összenyomja, a felszínhez közelebbre tolja a magnetoszféra határát, míg az éjszakai oldalon csóvaként elnyújtja). A magnetoszféra védőburkot von a Föld köré, a sugárzások nagy részének kiszűrésével lehetővé tette az élet kialakulását és védelmezi azt a kezdetek óta. A magnetoszféra jelenlétére két kísérleti bizonyíték létezik. Az egyik a sarki fény, a világűrben a napszéllel áramló részecskék, légköri gázok ionizálása közben felszabaduló fotonok okozta fényjelenség, a mező erővonalai mentén. A másik az iránytű, egy eszköz, amelyben a tű a mágneses észak-déli irány felé áll be. A Föld a Naptól számítva a harmadik bolygó. Központi csillagunk körüli pályája közel kör alakú, átlagos naptávolsága – amelyet Csillagászati egység (CsE) jelöléssel a Naprendszerbeli távolságok mérőszámaként is szokás alkalmazni – 150 millió kilométer. Az ellipszispálya napközelpontja 147 098 074, naptávolponja 152 097 701 kilométeren található. A Föld a Merkúrral, a Vénusszal és a Marssal együtt a Föld-típusú bolygókvagy más néven kőzetbolygók családjába tartozik, amelyek a Belső Naprendszer meghatározó objektumai. A Naprendszerbeli elhelyezkedése az ún. lakható övezetbe esik, abba a zónába, ahol a hőmérséklet elég meleg az élet alapkövét jelentő víz folyékony halmazállapotban tartására. 2011-ben a NASA Wide-field Infrared Survey Explorer (WISE) műholdjának adatai segítségével egy kb. 300 méter átmérőjű Trójai-típusú kísérőt azonosítottak 2010 TK7 néven az egyik Lagrange-pontban. Bolygónk a Nap körül kering, egy keringést 365,242199 nap alatt tesz meg. A keringés iránya nyugatról kelet felé mutat (a Nap szemszögéből nézve), egy a Nap és a Föld északi pólusa felett elhelyezkedő megfigyelő az óramutató járásával ellentétes keringést figyelhetne meg. A Föld átlagos pályamenti sebessége 30 km/s, amellyel a csillagos égbolthoz képest közelítőleg 1°-ot halad előre naponta a bolygó (a csillagok egy év alatt egy teljes kört írnak le látszólagos égi pályájukon a földi megfigyelő számára, emiatt az égbolt egy adott pontja minden nap kb. 4 perccel korábban kel fel a horizonton). A csillagászati és matematikai modellek nem egységesek a Föld keringésének stabilitását illetően. A legtöbb modell hosszú időn át – százmillió, vagy évmilliárdos skálán – stabil pályát vetít előre, egyes modellek szerint azonban megjósolhatatlanok a pályaváltozások. Földünk egyenlítője az ekliptika síkjával jelenleg 23,44°-ot zár be, amely egy korábbi bolygóközi ütközés eredménye. A tengelyferdeség és a Nap körüli keringés közös hatása az évszakok kialakulása a felszínen. A tengelyferdeség miatt a földfelszín egy adott pontjának megvilágítottsága állandóan változik az év során, ez periodikus évszak-változásokat okoz. Az északi féltekén nyár van, amikor az Északi-sarkpont a Nap felé fordul (ugyanekkor tél van a déli féltekén) és tél van, amikor a Déli pólus fordul a Nap felé (és ugyanekkor nyár van a déli félgömbön). Nyáron a nappalok hosszabbak és a hosszabb besugárzás miatt magasabbhőmérséklet alakul ki, míg télen rövidebb ideig tart a nappal és alacsonyabb a hőmérséklet is. A hatás az egyenlítőhöz közelebb kevésbé érezhető, a földrajzi szélesség emelkedésével egyre markánsabb. Az északi és déli sarkkörön túl pedig speciális megvilágítottsági viszonyok alakulnak ki: vannak időszakok, amikor több mint 24 órán át tartó éjszaka, vagy ugyanígy több mint 24 órán át tartó nappal van. A bolygó keringésének négy kitüntetett pályapontját tartja számon a csillagászat, ezek egyben az évszakok határát kijelölő dátumok is. Ilyen a két napforduló (a téli napforduló az északi féltekén december 21. vagy 22-én, a nyári napforduló pedig június 21-én), amikor a Föld forgástengelye legnagyobb szögben hajlik el a napsugaraktól. Ilyenkor vannak a leghosszabb és legrövidebb nappalok az egyes féltekéken. Illetve ilyenek anap-éj egyenlőségek, amikor a Nap pontosan 90°-ban delel az egyenlítő fölött (a tavaszi nap-éj egyenlőség napja az északi féltekén március 21., az őszi nap-éj egyenlőségé pedig szeptember 22.). A Föld a saját tengelye körül forgó mozgást végez. A forgás nyugatról kelet felé történik (ha az északi pólus felől tekintenénk a bolygóra, az óra járásával ellentétes irányú forgását tapasztalnánk). Bolygónk egy fordulata a viszonyítási ponthoz képest értelmezendő. 24 óra egy szoláris nap, amely egy időegység, a nap hossza is. Az időmérésre használt nap hossza – 86 400 másodperc –, a Naphoz mért forgási idő, azaz központi csillagunk két egymást követő delelése között eltelt átlagos idő. A csillagos égbolthoz képest azonban szoláris időben nem 24 órás napot mérhetünk, hanem csak 23 óra 56 perc 4,1 másodperc hosszút. Ez az időtartam egy tetszőleges csillag (kivéve a Nap) két delelése között eltelt idő, a sziderikus nap. A két időtartam közötti közel négy perc különbséget a Föld Nap körüli pályáján való egy nap alatti elmozdulása okozza. Létezik még egy harmadik időtartam is a nap hosszára vonatkoztatva, a csillagnap: ez a sziderikus nap hosszához képest mindössze 8,4 milliszekundummal rövidebb, és a különbség a Föld tengelyének precessziójamiatti elmozdulásból ered. A forgás eredete a Naprendszer kialakulásának idejéből származtatható: a 4,6 milliárd évvel ezelőtt született Naprendszer a központi protocsillag körül forgó anyagból álló rendszer volt és ez az egykori forgáskonzerválódott az ebből az anyagból létrejött objektumokban. A rendszerben jelen lévő gravitációs hatások azonban folyamatosan változtatnak az égitestek forgásán. A nap hossza a Hold által keltett árapály jelenség miatt folyamatosan növekszik, mivel az a Föld forgását folyamatosan lassítja. A modern időmérés alapjának számító másodperc korábban a Föld keringéséből származtatott mértékegység volt, azonban mára az egykor rögzített időtartam és a tényleges, keringésből mért időtartam eltér. Az eltérés nagyon csekély. Hogy az időszámítás ne boruljon fel, időnként szükség szerint egy-egy negyedév végén a Nemzetközi Távközlési Unió szökőmásodpercek beiktatásával igazítja az időszámítást a Föld valós mozgásához. A Föld tengely körüli forgása nyilvánvaló a Nap és a Hold égi mozgásának megfigyeléséből. A korai megfigyelők ezt a mozgást az égitestek Föld körüli keringésével magyarázták – a geocentrikus világképalapvetéseként –, azonban az elméletben is meghaladott „mozdulatlan Föld” koncepcióját a XIX. század fizikai kutatásai a Coriolis-erő hatásáinak bemutatásával kísérleti bizonyítékkal is cáfolták. A Coriolis-erő bemutatására szolgáló kísérletek bolygónk tengely körüli forgását igazolják.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

föld, terra, gaia, nap, latin, Szaturnusz, Hold, kék hold, Merkúr, Bolygó, csillag, csillagkép, csillagászat, távcső, Vénusz, Uránusz, Neptunusz, Mars, Pluto, Jupiter, Andromeda, törpebolygó, Orion, köd, csillagköd, Centauri, Kentaur, pulzár, sas, oltár, szűz, rák, vízöntő, bika, skorpió, oroszlán, nyilas, mérleg, ikrek, kos, halak, bak, paradicsommadár, légszivattyú, asztronómia, képgaléria, élővideó, astronomy, live streaming, saturn, starwars, jedi, jeti, bucka, Szigetszentmiklós, Budapest, Sziget, Szigethalom, Csillagvizsgáló, Szigetszentmiklósi csillagvizsgáló, planetárium, ufó, fekete ruhások, Tankcsapda, barlow lencse, Hidra, medve, űr, világűr, aszteroida, üstökös, space, űrhajó, kacsa, pletyka, hírek, hír, legfrissebb hírek, legfrissebb hír, bulvár, könyv, áruház, Messier 29, M29, NGC 6913, Messier 28, M28, NGC 6626, Messier 26, M26, NGC 6694, Messier 25, M25, Messier 24, M24, Kis Nyilas-csillagfelhő, Kis Sagittarius-csillagfelhő, Messier 23, M23, NGC 6494, Messier 21, messier 21, M21, Geminidák, meteorraj, Geminidák meteorraj, oktáns csillagkép, Hindu csillagkép, indus, hindu, Messier 19, M19, Messier 14, M14, hiúz csillagkép, hiúz, NGC 6402, M6, Messier 6, NGC 6405, pillangó halmaz, Messier 7, M7, NGC 6475, Skorpió csillagkép, Messier 30, M30, Messier 18, M18, Messier 106, M106, Messier 104, M104, NGC 4594, Sombrero-galaxis, Messier 83, M83, Déli Szélkerék-galaxis, Északi Vízi kígyó csillagkép, Messier 82, M82, M81, Messier 81, Szivar-galaxis, Messier 66, M66, M63, NGC 5055, Napraforgó-galaxis, Vadászebek, Canes Venatici, csillagkép, Messier 63, spirál galaxis, Pierre Méchain, fedezte fel, 1779. június 14-én., Charles Messier, francia csillagász, ugyanezen a napon, katalogizálta, galaxis, Ingaóra Csillagkép, Ingaóra, Horloge à pendule & à secondes, Horologium Oscillitorium, Christiaan Huygens, Horologium, α Horologii, R Hor, TW hor, NGC 1261, NGC 1512, Mira, Pegazus Csillagkép, Pegazus, Messier 15 gömbhalmaz, NGC 1 spirálgalaxis, NGC 2 spirálgalaxis, NGC 8 kettőscsillag, NGC 9 spirálgalaxis, NGC 14 szabálytalan galaxis, NGC 15 spirálgalaxis, NGC 16 lentikuláris galaxis, NGC 22 spirálgalaxis, NGC 23 spirálgalaxis, NGC 26 spirálgalaxis, NGC 32 aszterizmus, NGC 41 spirális galaxis, NGC 42 lentikuláris galaxis, NGC 52 spirális galaxis, NGC 7331 spirálgalaxis, NGC 7479 spirálgalaxis, NGC 7814 spirálgalaxis, Bellerophontész, Poszeidón, Hésziodosz, Hippokrene, α Pegasi, β Pegasi, Olümposz, Zeusz, Helikon, messier 57, M57, Gyűrűs-köd, M51, Messier 51, Messier 45, M45, Messier 43, M43, Messier 42, M42, Orion köd, Messier 32, M32, Messier 31, M31, Androméda galaxis, Androméda köd, Messier 27, M27, kis róka csillagkép, Charles Meisser, Messier 22, M22, Nyilas, Sagittarius, Messier 20, M20, Messier 17, M17, Omega-köd, Patkó-köd, Hattyú-köd, Sas köd, Messier 16, M16, M15, Messier 15, Pegazus, M13, messier 13, Hercules csillagkép, Hercules, messier 12, M12, Messier 11, M11, Vadkacsahalmaz, Pajzs csillagkép, messier 10, M10, Messier 9, Kígyótartó csillagkép, Kígyótartó, Messier 8, M8, Lagúna-köd, Messier 5, M5, Messier 4, M4, messier 2, Messier 1, M1, Rák-köd, Leonida, Leonidák meteorraj, TRAPPIST-1, naprenszeren kívűli bolygó, naperndszeren kívűli csillag, Messier 101, M101, Aranyhal, Dél keresztje, Crux, Szíriusz, sirius, alfa centauri, Kemence, Fornax, fornacis, Orionida, meteor, meteorraj, üstökös, orionids, halley, orion kardja, hullócsillag, távcső, föld, messier katalógus, csillagokonline, magyarul, közvilágítás, objektum, cet, cet csillagkép, kétó, Pontosz, hajógerinc, hajógerinc csillagkép, carina, OSIRIS Rex, Kentaur, Centaurus, Cepheus, észak, Cassiopeia, Kis Kutya, Canis Minor, Nagy Kutya, Canis Major, Vadászebek, kutyák, Camelopardalis, Véső, Ökörhajcsár, Szekeres, Küldd a neved a Marsra, Orion köd, Orion, Buborékok, Tarantula, Nebula, föld, terra, gaia, nap, latin, Szaturnusz, NASA